在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2022, Vol. 39 ›› Issue (2): 330-340.doi: 10.3969/j.issn.1005-3085.2022.02.012

• • 上一篇    

可积耦合 AKNS 方程的达布变换及其精确显式解

程建玲1,   冯依虎2   

  1. 1. 郑州西亚斯学院教育学院,新郑 451100
    2. 亳州学院电子与信息工程系,亳州 236800
  • 出版日期:2022-04-15 发布日期:2022-06-15
  • 基金资助:
    国家自然科学基金 (11975145);安徽省自然科学重点研究项目 (KJ2021A11500);亳州学院校级优秀教学团队 (2021XJXM006).

Darboux Transformation of the Integrable Coupling AKNS Equations and Its Exact Explicit Solutions

CHENG Jianling1,   FENG Yihu2   

  1. 1. School of Education, Sias University, Xinzheng 451100
    2. Department of Electronics and Information Engineering, Bozhou College, Bozhou 236800
  • Online:2022-04-15 Published:2022-06-15
  • Supported by:
    The National Natural Science Foundation of China (11975145); the Natural Science Foundation of the Education Department of Anhui Province (KJ2021A11500); the Excellent Teaching Team of Bozhou University (2021XJXM006).

摘要:

由于许多物理现象需要建立有两个或多个分量的波动模型用以说明不同的模式、频率和极化现象。此外,只有多分量系统才能从理论和实践上解释一些多个物理场能量的交换。因此,给定一个可积系统,我们如何构造一个非平凡的微分方程系统,使它是可积的并且包含原系统为一个子系统,是可积耦合研究的重要问题之一。利用一个稳定方程推导可积耦合 AKNS 方程,然后给出一次达布变换,其中的元素可以用两个行列式的商来表示。通过比较一次达布变换的形式和特点,推导出用行列式表示的  $N$ 次达布变换公式。进而利用种子解,通过 $N$ 次达布变换进行迭代,可以得到任意阶孤子解。作为达布变换的应用,我们求出了精确显式单孤子解。

关键词: 达布变换, 可积耦合 AKNS 方程, 精确显式解

Abstract:

For many physical phenomena, it is necessary to establish wave models with two or more components to explain different patterns, frequencies and polarization phenomenna. In addition, only multi-component systems can explain the energy exchange of multiple physical fields theoretically and practically. Therefore, for a integrable system, how to construct a non-trivial differential equation system that is integrable and contains the original system as a subsystem is one of the important problems in the study of integrable coupling. In this work, the integrable couplings of the Ablowitz-Kaup-Newell-Segur equation are constructed based on a stationary equation. Then a Darboux transformation in which the elements can be expressed by the quotient of two determinants is obtained, and the production process is proved strictly. By comparing the forms and characteristics of the one-fold Darboux transformation, $N$-fold Darboux transformation formula which can be demonstrated as determinants is derived. Therefore, by means of seed solutions and $N$-fold Darboux transformation, any-order soliton solutions can be derived. As the application of Darboux tarnsformation, we solve the exact explicit one-soliton solutions.

Key words: Darboux transformation, couplings of the AKNS equation, exact explicit solutions

中图分类号: