摘要:
针对量子粒子群优化 (Quantum Particle Swarm Optimization, QPSO) 算法的缺陷,提出了一种基于 L$\acute{\rm e}$vy 飞行策略和混合概率分布的改进量子粒子群优化 (Hybrid Quantum Particle Swarm Optimization, HQPSO) 算法。在算法的设计中,借助 L$\acute{\rm e}$vy 飞行策略对粒子位置的迭代公式进行更新,用于改善算法的局部收敛精度,增强其全局探索能力。另外,考虑到迭代后期的早熟问题,在势阱模型中引入了指数分布和正态分布相结合的混合概率分布,帮助算法及时逃离局部最优。基于 16 个基准函数的测试结果表明,HQPSO 算法在收敛精度和鲁棒性上比其他几种算法表现更好。最后,将改进的 QPSO 算法应用到自融资投资组合模型的求解中,其数值结果与差分进化、粒子群优化算法和量子粒子群优化算法相比,HQPSO 算法展现出更好的可比性和优越性。
中图分类号:
何 光, 卢小丽, 李高西. 改进的 QPSO 算法在自融资投资组合中的应用[J]. 工程数学学报, 2022, 39(4): 533-544.
HE Guang, LU Xiaoli, LI Gaoxi. Application of Improved QPSO Algorithm in Self-financing Portfolio[J]. Chinese Journal of Engineering Mathematics, 2022, 39(4): 533-544.