摘要:
基于重新感染情形,建立了一个具有接种、潜伏和染病年龄结构的流行病模型,目的在于讨论疫苗接种年龄、潜伏年龄和感染年龄对模型全局动力学的影响,得到了模型的全局动力学由基本再生数决定。首先,利用偏微分方程沿特征线积分理论,给出了模型解的存在唯一性、连续有界性和渐近光滑性;其次,利用微分方程解的理论,得到模型的平衡点和基本再生数。再次,结合引入的基本再生数和构造的Lyapunov函数,应用LaSalle不变性原理得到结论:若基本再生数小于1,则无病平衡点全局渐近稳定;若基本再生数大于1,则无病平衡点不稳定。最后,数值模拟验证了所讨论模型的解收敛于无病平衡点。
中图分类号:
王 飞, 付丽婷. 具有年龄结构的流行病模型的全局稳定性[J]. 工程数学学报, 2023, 40(3): 413-424.
WANG Fei, FU Liting. Global Stability of an Epidemic Model with Age-structure[J]. Chinese Journal of Engineering Mathematics, 2023, 40(3): 413-424.