在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2019, Vol. 36 ›› Issue (2): 165-178.doi: 10.3969/j.issn.1005-3085.2019.02.004

• • 上一篇    下一篇

河床流体模型方程扭状孤波解的渐近稳定性

张冬洁,   张卫国,   雍   燕,   李   想   

  1. 上海理工大学理学院,上海  200093
  • 收稿日期:2017-05-03 接受日期:2018-10-11 出版日期:2019-04-15 发布日期:2019-06-15
  • 通讯作者: 张卫国 E-mail: zwgzwm@126.com
  • 基金资助:
    国家自然科学基金(11471215).

The Asymptotic Stability of the Kink Profile Solitary-wave Solution for the Fluidized-bed Modeling Equation

ZHANG Dong-jie,  ZHANG Wei-guo,  YONG Yan,  LI Xiang   

  1. College of Science, University of Shanghai for Science and Technology, Shanghai 200093
  • Received:2017-05-03 Accepted:2018-10-11 Online:2019-04-15 Published:2019-06-15
  • Contact: W. Zhang. E-mail address: zwgzwm@126.com
  • Supported by:
    The National Natural Science Foundation of China (11471215).

摘要: 河床流体模型方程是出现在两相流体动力学中的重要模型,本文研究了该模型单调递减扭状孤波解的渐近稳定性.文中我们首先推导了关于该扭状孤波解的一阶、二阶导数估计,然后再运用恰当的能量估计技巧和Young不等式,克服了该模型复杂耗散项引起的困难,得到了其扭状孤波解关于扰动的一致能量估计,从而证明了该模型单调递减扭状孤波解的渐近稳定性.

关键词: 河床流体模型方程, 单调递减扭状孤波解, 能量估计, Young不等式, 渐近稳定性

Abstract: The fluidized-bed modeling equation is an important model in the dynamics of two-phase flow. In this paper, we consider the asymptotic stability of the monotone decreasing kink profile solitary-wave solution of the equation. At first, we obtain the first and second derivative estimates of the kink profile solitary-wave solution. Then according to the technical energy estimation and Young inequalities, we overcome the difficulty caused by the complex dissipative term, and establish the uniformly energy estimate for the perturbation of the traveling wave solution. Finally, we prove that the monotone decreasing kink profile solitary-wave solution is asymptotically stable.

Key words: fluidized-bed modeling equation, monotone decreasing kink profile solitary-wave solution, priori energy estimate, Young inequality, asymptotic stability

中图分类号: