在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2021, Vol. 38 ›› Issue (2): 293-300.doi: 10.3969/j.issn.1005-3085.2021.02.012

• • 上一篇    

特殊图$b$-色数的相关性质

王国兴1,2,   曹晓军1,2   

  1. 1- 兰州财经大学丝绸之路经济研究院,兰州  730020
    2- 兰州财经大学信息工程学院,兰州  730020
  • 收稿日期:2018-11-22 接受日期:2020-04-24 出版日期:2021-04-15 发布日期:2022-11-08
  • 基金资助:
    国家自然科学基金 (61662066; 11761064);甘肃省高等学校创新能力提升项目 (2019A-070);兰州财经大学丝绸之路经济研究院重点课题 (JYYZ201703).

Some Properties on the $b$-chromatic Number of Special Graphs

WANG Guo-xing1,2,   CAO Xiao-jun1,2   

  1. 1- Gansu Silk Road Economic Research Institute, Lanzhou University of Finance and Economics, Lanzhou 730020
    2- College of Information Engineering, Lanzhou University of Finance and Economics, Lanzhou 730020
  • Received:2018-11-22 Accepted:2020-04-24 Online:2021-04-15 Published:2022-11-08
  • Supported by:
    The National Natural Science Foundation of China (61662066; 11761064); the Project of Improving the Innovation Ability of Universities in Gansu Province (2019A-070); the Key Project of the Silk Road Economic Research Institute of Lanzhou University of Finance and Economics (JYYZ201703).

摘要: 图染色是图论中研究热点问题之一,在许多领域都有重要的应用.用$\chi(G)$和$\varphi(G)$分别表示连通图$G$的色数和$b$-色数.对连通图$R,S$,称图$G$不含导出$\{R, S\}$,如果图$G$不含同构于$R$和$S$的导出子图.本文证明了对任意连通的至少4个顶点的图$R,S$,连通(或者2-边连通或者2-连通)不含$\{R, S\}$的图$G$满足$\chi(G)=\varphi(G)$当且仅当$\{R, S\}\preceq \{P_5, Z_1\}$.其中$P_5$是5个顶点的路,$Z_1$是将$P_2$和三角形的一个顶点粘合所得的图.此外,给出了特殊interlacing图$IG_{n, 2}$和$IG_{n, 3}$的$b$-色数的下界.

关键词: 色数, $b$-色数, 导出子图, interlacing图

Abstract: Graph coloring is one of the most hot issues in graph theory and has important applications in many fields. For a connected graph $G$, we use $\chi(G)$ and $\varphi (G)$ to denote the chromatic number and $b$-chromatic number of $G$, respectively. Let $R,S$ be two connected graphs. Then $G$ is said to be $\{R, S\}$-free if $G$ does not contain $R$ and $S$ as induced subgraphs. In this paper, we prove that for any connected graphs $R$ and $S$ of order at least 4, every connected (2-edge-connected or 2-connected) $\{R, S\}$-free graph $G$ implies $\chi(G)=\varphi (G)$ if and only if $\{R, S\}\preceq\{P_5, Z_1\}$, where $P_5$ is a path of order 5 and $Z_1$ is the graph obtained by identifying one vertex of $P_2$ and one vertex of a triangle. Besides, we give the lower bound of $b$-chromatic numbers of two special classes of interlacing graphs $IG_{n, 2}$ and $IG_{n, 3}$.

Key words: chromatic number, $b$-chromatic number, induced subgraph, interlacing graph

中图分类号: