在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2022, Vol. 39 ›› Issue (3): 428-438.doi: 10.3969/j.issn.1005-3085.2022.03.007

• • 上一篇    下一篇

基于混合有限差分格式的非线性奇异摄动问题的最大范数的后验误差估计

包小兵1,   刘利斌2,   梁治芳2   

  1. 1. 池州学院大数据与人工智能学院,安徽 池州 247000
    2. 南宁师范大学数学与统计学院,广西 南宁 530299
  • 出版日期:2022-06-15 发布日期:2022-08-15
  • 通讯作者: 刘利斌 E-mail: liulibin969@163.com
  • 基金资助:
    国家自然科学基金 (11761015);广西自然科学基金 (2020GXNSFAA159010);安徽省高校优秀青年人才支持计划项目 (gxyq2021225).

Maximum Norm a Posteriori Error Estimation for Nonlinear Singularly Perturbed Problems Based on a Hybrid Finite Difference Scheme

BAO Xiaobing1, LIU Libin2, LIANG Zhifang2   

  1. 1. School of Big Data and Artificial Intelligence, Chizhou University, Chizhou, Anhui 247000
    2. School of Mathematics and Statistics, Nanning Normal University, Nanning, Guangxi 530299
  • Online:2022-06-15 Published:2022-08-15
  • Contact: L. Liu. E-mail address: liulibin969@163.com
  • Supported by:
    The National Natural Science Foundation of China (11761015); the Natural Science Foundation of Guangxi (2020GXNSFAA159010); the Projects of Excellent Young Talents Fund in Universities of Anhui Province (gxyq2021225).

摘要:

自适应移动网格算法在奇异摄动微分方程的数值解法中占有非常重要的地位,其关键技术是构造出有效的离散格式和相应的后验误差估计。基于此,对一类带参数的一阶非线性奇异摄动初值问题,给出了其连续解的稳定性估计及相关推论。然后,在任意非均匀网格上,利用向后欧拉公式和一阶中心有限差分格式建立了一个混合有限差分格式,并严格分析了离散解的稳定性。同时,基于连续解的稳定性估计和分段线性插值技术,推导出混合有限差分格式的最大范数的后验误差估计。利用该后验误差估计选择了一个最优的网格控制函数,并结合网格等分布原理设计了一个自适应网格生成算法。最后的数值实验验证了自适应移动网格算法的有效性,且算法的平均收敛阶可达到二阶。数值结果进一步表明自适应移动网格的误差明显小于 Shishkin 网格的误差,且其收敛阶也高于 Shishkin 网格计算得到的收敛阶。

关键词: 奇异摄动, 自适应移动网格算法, 后验误差, 差分策略

Abstract:

The adaptive moving mesh algorithm plays a very important role in the numerical solution of singularly perturbed differential equations. The key technology here is the construction of an effective discrete scheme and the corresponding a posteriori error estimation. Based on this, for a class of nonlinear singularly parameterized problems, the stability estimates of continuous solutions and related corollaries are given. Then, a hybrid finite difference scheme is established by using the backward Euler formula and the first-order central finite difference scheme on an arbitrary nonuniform grid, and the stability of the discrete solution is analyzed. Based on this stability estimation and the piecewise linear interpolation technique, an a posterior error estimation of the maximum norm of the mixed finite difference scheme is given. Using the a posterior error estimation, an optimal grid monitor function is selected, and an adaptive grid generation algorithm is designed based on the mesh equidistribution principle. Finally, numerical experiments verify the effectiveness of the adaptive moving mesh algorithm, and the average convergence order of the algorithm can reach the second order. Furthermore, it is shown from the numerical results that the error of the adaptive moving mesh is obviously smaller than that of the Shishkin mesh, and its convergence order is higher than that of the Shishkin mesh.

Key words: singularly perturbed, adaptive moving grid algorithm, a posteriori error, difference scheme

中图分类号: