在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2022, Vol. 39 ›› Issue (4): 621-630.doi: 10.3969/j.issn.1005-3085.2022.04.010

• • 上一篇    下一篇

弱罗马图和图的弱罗马控制的一些性质

杨  剑1,   李志强2   

  1. 1. 河南交通职业技术学院公共基础教学部,郑州 450000
    2. 河南财经政法大学数学与信息科学学院,郑州 450002
  • 出版日期:2022-08-15 发布日期:2022-10-15
  • 基金资助:
    国家自然科学基金 (62073122; 61203050);河南省高等学校重点科研项目 (22A880007; 20A120003);河南省高等学校青年骨干教师培养计划 (2017GGJS243);河南省高等教育教学改革研究与实践项目 (2019SJGLX735).

Some Properties of Weak Roman Graph and Weak Roman Domination in Graphs

YANG Jian1,   LI Zhiqiang2   

  1. 1. Public Basic Teaching Department, Henan College of Transportation, Zhengzhou 450000
    2. School of Mathematics and Information Science, Henan University of Economics and Law, Zhengzhou 450002
  • Online:2022-08-15 Published:2022-10-15
  • Supported by:
    The National Natural Science Foundation of China (62073122; 61203050); the Key Scientific Research of Colleges and Universities in Henan Province (22A880007; 20A120003); the Young Key Teacher Training Program of Colleges and Universities in Henan Province (2017GGJS243); the Research and Practice Project of Higher Education Reform in Henan Province (2019SJGLX735).

摘要:

罗马控制是一个有丰富历史背景和数学背景的典型控制问题,它与计算机科学、交通安全监管控制、企业安全生产监管控制、组合优化、监视系统和社会网络等领域密切相关,具有重要的理论意义和应用价值。图的弱罗马控制数是图的弱罗马控制函数的最小权,记为$\gamma_{r}(G)$。图 $G$ 的控制集的最小基数称为最小控制数,记为 $\gamma(G)$。若图 $G$ 满足 $\gamma_{r}(G)=2\gamma(G)$,则称图 $G$ 是弱罗马图。用构造法确定了路 $P_{3}$,星 $K_{1, t} (t\geq2)$,由星 $K_{1, t_{1}},K_{1, t_{2}},\cdots,K_{1, t_{n}}\,(t_{i}\geq3, i=1,2,\cdots,n)$ 的中心点依次连接成一条路所构成的树 $T$,或由它们的外点连接构成的树$T$ 是弱罗马图,并给出了弱罗马图和图的弱罗马控制的一些性质。

关键词: 弱罗马控制, 罗马控制, 控制数, 弱罗马图,

Abstract:

Roman domination is a typical control problem with rich historical background and mathematical background, which is related to computer science, traffic safety supervision and control, enterprise safety production supervision and control, portfolio optimization, monitoring system and social network and other fields are closely related and have important theoretical significance and application value. The weak Roman domination number of graphs, denoted by $\gamma_{r}(G)$, is the minimum weight of a weak Roman dominating function in graphs. The domination number, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set in $G$. We say that a graph $G$ is a weak Roman graph if $\gamma_{r}(G)=2\gamma(G)$. It is determined that the path $P_{3}$, stars $K_{1, t} (t\geq2)$ and trees $T$ which consist of the center vertices of stars $K_{1,t_{1}},K_{1, t_{2}},\cdots,K_{1, t_{n}}(t_{i}\geq3, i=1,2,\cdots,n)$ to form a path, or trees $T$ which made up of their outer vertices are weak Roman graph by means of construction, and some properties of weak Roman graphs and weak Roman dominating in graphs are given.

Key words: weak Roman domination, Roman domination, domination number, weak Roman graph, star

中图分类号: