工程数学学报 ›› 2023, Vol. 40 ›› Issue (2): 321-331.doi: 10.3969/j.issn.1005-3085.2023.02.011
颜鲁林1, 常小凯2
YAN Lulin1, CHANG Xiaokai2
摘要: 双线性鞍点问题及其对应的原问题和对偶问题在信号图像处理、机器学习、统计和高维数据处理等领域具有重要的应用,原始对偶算法是求解该类问题的有效算法。利用序列的线性组合技术,改进了Chambolle-Pock原始对偶算法子问题的求解,提出了一种求解双线性鞍点问题的新原始对偶算法。该算法也是Arrow-Hurwicz算法的修正,在子问题求解中将线性组合和经典的外插技术进行结合,得到了更一般的收敛性。利用变分分析证明了算法的收敛性和遍历$\mathcal{O}(1/N)$收敛率,获得了保证算法收敛的步长和组合参数取值范围,求解非负最小二乘和Lasso问题的数值实验验证了算法的有效性。
中图分类号: