在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2016, Vol. 33 ›› Issue (1): 91-105.doi: 10.3969/j.issn.1005-3085.2016.01.009

• • 上一篇    下一篇

含脉冲的随机延迟细胞神经网络的均方指数稳定性与周期解(英)

李  浩1,   李  毓2   

  1. 1- 广西师范大学数学与统计学院,桂林 541004
    2- 信阳师范学院经济学院,信阳 464000
  • 收稿日期:2014-03-25 接受日期:2015-03-09 出版日期:2016-02-15 发布日期:2016-04-15
  • 基金资助:
    河南省教委重大基金项目 (14B910001);河南省哲学社会科学规划项目 (2014BJJ069).

Mean Square Exponential Stability and Periodic Solutions of Stochastic Delay Cellular Neural Networks with Impulses

LI Hao1,  LI Yu2   

  1. 1- School of Mathematics and Statistics, Guangxi Normal University, Guilin 541004
    2- School of Economics, Xinyang Normal University, Xinyang 464000
  • Received:2014-03-25 Accepted:2015-03-09 Online:2016-02-15 Published:2016-04-15
  • Supported by:
    The Major Project of Foundation of Educational Committee of Henan Province (14B910001); the Planning Project of Philosophy and Social Science of Henan Province (2014BJJ069).

摘要: 本文主要研究一类带离散延迟和脉冲的随机细胞神经网络(SDCNNswI)的均方指数稳定性和周期解的存在性.首先,用庞加莱收缩理论分析了SDCNNswI的周期解存在条件;其次,用李雅谱诺夫函数、随机分析理论和Young不等式推出了几个定理,给出了保证SDCNNswl的周期解具有均方指数稳定性的几个充分条件,其中只包含SDCNNswI的几个控制参数,通过简单的代数方法即可验证.最后,通过两个例子说明了所提出准则的有效性.

关键词: 布朗运动, Young不等式, It\^{o}公式, 李雅谱诺夫函数, 指数稳定性, 细胞神经网络

Abstract:

For a class of stochastic cellular neural networks with discrete delays and impu-lses (SDCNNswI), this paper discusses their exponential stability and the existence of periodic solutions. Firstly, Poincare contraction theory is utilized to derive the conditions to guarantee the existence of periodic solutions of SDCNNswI. Next, Lyapunov function, stochastic analysis theory and Young inequality are develo-ped to derive some theorems. These theorems provide several sufficient conditions to guarantee that the periodic solutions of SDCNNswI are mean square exponentially stable. These sufficient conditions only include the governing parameters of SDCNNswI and can be easily checked by simple algebraic methods. Finally, two examples are given to demonstrate the usefulness of the obtained results.

Key words: Brownian motion, Young inequality, It$\hat{\rm o}$ formula, Lyapunov function, exponential stability, cellular neural networks

中图分类号: