在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2022, Vol. 39 ›› Issue (3): 379-388.doi: 10.3969/j.issn.1005-3085.2022.03.003

• • 上一篇    下一篇

群组决策主观评分型竞赛名次的优化模型

郭东威1,   丁根宏2   

  1. 1. 周口师范学院数学与统计学院,周口 466000
    2. 河海大学理学院,南京 211100
  • 出版日期:2022-06-15 发布日期:2022-08-15
  • 基金资助:
    国家自然科学基金 (61703447);河南省教育厅人文社会科学研究资助项目 (2020-ZZJH-566).

Optimization Model of Group Decision-making for Subjective Scoring Competition Ranking

GUO Dongwei1,   DING Genhong2   

  1. 1. School of Mathematics and Statistics, Zhoukou Normal University, Zhoukou 466000 
    2. College of Science, Hohai University, Nanjing 211100
  • Online:2022-06-15 Published:2022-08-15
  • Supported by:
    The National Natural Science Foundation of China (61703447); the Humanity and Social Sciences Foundation of He'nan Provincial Department of Education (2020-ZZJH-566).

摘要:

对评委打分特点及群组决策机制进行研究,发现在缺损评分系统中,尤其是主观评分型竞赛,传统法或 T 分数法的排名结果存在较大误差。为了提高排名的科学性,首先建立了论文均匀分配给评委的数学模型,其次利用极差平方和最小法确定各评委的权重,最后依据各论文得分的加权平均值进行排名。仿真模拟实验表明:与传统法及标准分法相比较,新方法提高了主观名次与客观名次的重合度,减小了乱序度。通过欧氏距离证明了新方法减小了论文的争议度及评委打分的误差度。

关键词: 群组决策, 极差平方和, 系统误差, 权重, 主观型评分

Abstract:

Through examining the characteristics of the judges' scoring and the group decision-making mechanism, it is found that in the incomplete scoring system, especially in the subjective scoring competition, there exists a large error in the ranking results of the traditional method or the T score method. In order to improve the scientificity of ranking, a mathematical model is established to distribute the papers evenly among the judges, and then the weight of each judge is determined by the minimum sum of the squares of ranges. Finally, the ranking is determined according to the weighted average value of each paper's scores. Simulation results show that, compared with the traditional and standard score methods, the new method can improve the coincidence of subjective and objective ranking and reduces the disorder degree. By calculating the Euclidean distance, it is proved that the new method can reduce the experts' scoring error and the resulting controversy.

Key words: group decision-making, sum of squares of ranges, systematic error, weight, subjective score

中图分类号: