在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2023, Vol. 40 ›› Issue (3): 425-438.doi: 10.3969/j.issn.1005-3085.2023.03.007

• • 上一篇    下一篇

改进的高阶加权紧致非线性差分格式

李小纲1,   王建玲2,   胡伟依1,   汪文帅3   

  1. 1. 宁夏大学土木与水利工程学院,银川 750021
    2. 银川科技学院信息工程学院,银川 750021
    3. 宁夏大学数学统计学院,银川 750021
  • 收稿日期:2021-02-25 接受日期:2022-05-16 出版日期:2023-06-15 发布日期:2023-08-15
  • 通讯作者: 汪文帅 E-mail: wws@nxu.edu.cn
  • 基金资助:
    国家自然科学基金 (42064004; 12161067);宁夏自然科学基金 (2022AAC03070).

Improved High Order Weighted Compact Nonlinear Difference Scheme

LI Xiaogang1,  WANG Jianling2,  HU Weiyi1,  WANG Wenshuai3   

  1. 1. School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021
    2. College of Information Engineering, Yinchuan University of Science and Technology, Yinchuan 750021
    3. School of Mathematics and Statistics, Ningxia University, Yinchuan 750021
  • Received:2021-02-25 Accepted:2022-05-16 Online:2023-06-15 Published:2023-08-15
  • Contact: W. Wang. E-mail address: wws@nxu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China (42064004; 12161067); the Natural Science Foundation of Ningxia (2022AAC03070).

摘要:

基于中心紧致三对角系数矩阵的四阶、六阶格式,通过非线性组合五阶WENO差分格式大模板和两个对称小模板对网格半节点函数值的插值计算,得到求解双曲守恒律方程的四阶、五阶加权紧致非线性差分格式。线性对流方程的计算结果验证了格式的计算精度和计算效率;一维无粘Burgers方程的计算结果验证了格式分辨率;一、二维欧拉方程的计算结果验证了格式对非线性问题中激波间断的捕捉能力。所有数值实验均表明,构造的新格式是一个高效、高精度、高分辨率的激波捕捉格式。

关键词: 加权紧致, 非线性差分格式, 全局光滑因子

Abstract:

Based on the fourth- and sixth-order central compact schemes with tridiagonal coefficient matrix, the fourth- and fifth-order weighted compact nonlinear difference schemes are obtained for solving hyperbolic conservation law equations, the function values of half-node are interpolated with the nonlinear combination of the fifth-order WENO difference scheme of large template and two small symmetrical templates. The computational accuracy and efficiency of the new scheme are verified by the results of linear convection equation. The resolution of the new scheme is verified by the results of one-dimensional inviscid Burgers equation. The ability of the new scheme to capture the shock discontinuity in nonlinear problems is verified by one - and two-dimensional Euler equations. The numerical experiments show that the proposed scheme is an efficient, high-order and high-resolution shock capturing scheme.

Key words: weighted compact, nonlinear difference scheme, global smoothness indicator

中图分类号: