在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2024, Vol. 41 ›› Issue (2): 341-364.doi: 10.3969/j.issn.1005-3085.2024.02.010

• • 上一篇    下一篇

复杂等离子体光子晶体能带结构计算

卢  欣1  旷  盈1,  杨  洁1,  王志杰1,  王立群1,2   

  1. 1. 中国石油大学 (北京) 理学院,北京 102249;
    2. 中国石油大学 (北京) 油气光学探测技术北京市重点实验室,北京 102249
  • 收稿日期:2022-11-12 接受日期:2023-05-22 出版日期:2024-04-15 发布日期:2024-06-15
  • 通讯作者: 王立群 E-mail: wliqunhmily@cup.edu.cn
  • 基金资助:
    国家自然科学基金 (12171482);中国石油大学油气资源与探测国家重点实验室项目 (PRP/DX-2307).

Band Structure Computation of Complex Plasma Photonic Crystals

LU Xin1,  KUANG Ying1,  YANG Jie1,  WANG Zhijie1,  WANG Liqun1,2   

  1. 1. College of Science, China University of Petroleum-Beijing, Beijing 102249;
    2. Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum-Beijing, Beijing 102249
  • Received:2022-11-12 Accepted:2023-05-22 Online:2024-04-15 Published:2024-06-15
  • Contact: L. Wang. E-mail address: wliqunhmily@cup.edu.cn
  • Supported by:
    The National Natural Science Foundation of China (12171482); the Project of State Key Laboratory of Petroleum Resources and Prospecting of China University of Petroleum (PRP/DX-2307).

摘要:

等离子体光子晶体是由等离子体和其他介电材料或者真空构成的,具有周期性结构,其可调控的带隙特性使得等离子体光子晶体在滤波器、等离子体隐身衣和等离子体透镜等军事医学器件制造上具有广泛的应用。因此,通过改变等离子体的密度、温度等参数来获取满足特定需求的能带结构特性便有着非常重要的意义。基于上述考虑,提出 Petrov-Galerkin 有限元计算方法来求解并分析等离子体光子晶体的带隙特性。该方法的核心思想是构造在边界上系数互为倒数的基函数和测试函数所构成的空间,在消除边界上积分的同时降低自由度。采用的网格为半笛卡尔投影网格,该网格能适应复杂等离子体柱形状。在建立弱形式时将界面非线性连续条件线性化,简化了界面积分项的处理。通过绘制数值算例的能带结构图,分析验证了等离子体电子密度、等离子体光子晶体柱的填充率和形状等因素对带隙宽度、带隙位置、耦合带隙以及截止频率造成的影响,从而实现等离子体光子晶体能带结构的可调控性。

关键词: 等离子体光子晶体, Petrov-Galerkin有限元法, 半笛卡尔投影网格, 界面非线性连续条件, 能带结构

Abstract:

Plasma photonic crystals are composed of plasma and other dielectric materials or vacuum, and have a periodic structure. Their tunable band gap properties enable plasma photonic crystals to be widely used in the manufacture of military medical devices such as filters, plasma cloaks, and plasma lenses. Therefore, it is of great significance to obtain the energy band structure characteristics we need by changing the parameters such as the density and temperature of the plasma. Based on the above considerations, a Petrov-Galerkin finite element method is proposed to solve and analyze the band gap characteristics of plasmonic photonic crystals. The core idea of this method is to construct a basis function space and a test function space whose coefficients are reciprocal of each other on the boundary, and reduce the degree of freedom while eliminating the integral on the boundary. The adopted grid is a semi-Cartesian projected grid, which can adapt to complex plasma column shapes. When the weak form is established, the interface nonlinear continuous condition is linearized, which simplifies the processing of the interface integral term. By drawing the energy band structure diagram of the numerical example, the effects of the plasma electron density, the filling ratio and shape of the plasma photonic crystal column on the band gap width, band gap position, coupling band gap and cut-off frequency are analyzed and verified. Therefore, the controllability of the energy band structure of the plasma photonic crystal can be derived.

Key words: plasma photonic crystals, Petrov-Galerkin finite element method, semi-Cartesian projected grid, interface nonlinear continuum condition, energy band structure

中图分类号: