在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2023, Vol. 40 ›› Issue (5): 681-698.doi: 10.3969/j.issn.1005-3085.2023.05.001

• •    下一篇

基于CNN和DUL的电力设备低质量X射线图像分合闸识别

周静波1,  郝坤坤2,3,  吴安波2,3   

  1. 1. 云南电网有限责任公司电力科学研究院,昆明 650217;  
    2. 西安科技大学管理学院,西安 710054;  
    3. 西安交通大学机械制造系统工程国家重点实验室,西安 710049
  • 收稿日期:2021-04-06 接受日期:2021-06-08 出版日期:2023-10-15 发布日期:2023-12-15
  • 基金资助:
    中国南方电网云南电网有限责任公司科研项目.

Power Equipment Low-quality X-ray Images Opening/Closing Recognition Based on CNN and DUL

ZHOU Jingbo1,  HAO Kunkun2,3,  WU Anbo2,3   

  1. 1. Electric Power Research Institute of Yunnan Power Grid Company Limited, Kunming 650217;
    2. School of Management, Xi'an University of Science and Technology, Xi'an 710054;  
    3. State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an 710049
  • Received:2021-04-06 Accepted:2021-06-08 Online:2023-10-15 Published:2023-12-15
  • Supported by:
    The Science Research Project of China Southern Power Grid Yunnan Power Grid Company Limited.

摘要:

电力巡检机器人系统在对电力设备分合闸X射线图像采集过程中,往往存在图像失真、模糊、低分辨率等低质量问题,对于X射线图像分合闸状态的识别造成了困难。基于此,提出一种基于数据不确定性学习DUL的深度学习识别方法。首先,分别使用三种卷积神经网络BaseNet、ResNet18与MobileNetV3设计识别算法。然后,通过融合DUL模块,卷积神经网络将图像空间映射到一种服从高斯分布的不确定的特征空间,以自适应学习低质量X射线图像中的噪声。最后,设计三组对比实验模拟理想环境、恶劣环境及正常环境下的不同质量数据对模型识别性能的影响。实验结果表明,融合DUL模块的算法模型性能优于确定性模型,X射线图像分合闸平均识别精度提升2.64\%;ResNet18+DUL表现最好,精度高达100\%,适用于在线识别;MobileNetV3+DUL表现次之,精度高达97.83\%,适用于离线识别。

关键词: 低质量X射线图像, 分合闸识别, 数据不确定性学习, 卷积神经网络

Abstract:

In the process of power equipment opening/closing X-ray images acquisition by power inspection robot system, there are often low-quality problems such as image distortion, blur and low resolution, which make it difficult to identify the opening/closing state of X-ray images. Therefore, this paper proposes a deep learning recognition method based on data uncertainty learning. Firstly, the recognition algorithm is designed with three convolutional neural networks BaseNet, ResNet18 and MobileNetV3. Then, by fusing the DUL module, the convolutional neural network maps the images space to an uncertain features space that obeys the Gaussian distribution to adaptively learn the noise in low-quality X-ray images. Finally, three groups of comparative experiments are presented to simulate the influence of different quality data on the recognition performance of the model under ideal environment, harsh environment, and normal environment. The experimental results show that the model based on data uncertainty learning performs better than the deterministic model, and the average recognition accuracy of X-ray image opening/closing is increased by 2.64\%. ResNet18+DUL performs best, with an accuracy of up to 100\%, suitable for online recognition. MobileNetV3+DUL is with an accuracy of up to 97.83\%, suitable for offline recognition.

Key words: low quality X-ray images, opening/closing recognition, data uncertainty learning, CNN

中图分类号: