摘要:
Helmholtz方程是一类描述电磁波的椭圆型偏微分方程,在力学、声学和电磁学等领域应用广泛。为了消除因高波数引起的污染效应,数值求解Helmholtz方程的传统方法是对网格进行加密,网格加密不仅增加了时间复杂度,且离散后的矩阵通常是病态的。因此,寻求对任意波数都有效的方法是必要的。在有限体积法的基础上,引入变限因子,将微分方程完全转换成积分方程,利用一元三点和二元九点Lagrange插值公式,构造含三对角矩阵的离散格式,分别对一维和二维Helmholtz方程进行变限积分法的数值求解。该方法适用于任意波数,求解过程物理意义明确,数值格式简单。对于一维Helmholtz方程研究了变限因子对误差的影响,利用Taylor展式及Lagrange插值余项公式进行误差估计,证明离散格式的截断误差达到二阶。数值实例表明该离散格式的变限因子和步长相等时,误差阶较低。对二维Helmholtz方程,探究不同波数对数值解的影响,证明离散格式的截断误差达到三阶。数值实例表明,对于不同的波数,数值格式都有较好的精度,高波数没有引起污染效应。
中图分类号:
王雅楠, 王桂霞, 胡学佳. Helmholtz方程基于变限积分法的数值求解[J]. 工程数学学报, 2023, 40(5): 822-832.
WANG Yanan, WANG Guixia, HU Xuejia. The Variable Limit Integral Method for Helmholtz Equation[J]. Chinese Journal of Engineering Mathematics, 2023, 40(5): 822-832.