在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2016, Vol. 33 ›› Issue (6): 613-630.doi: 10.3969/j.issn.1005-3085.2016.06.005

• • 上一篇    下一篇

泊松噪声下图像去模糊的几个非凸模型(英)

刘 刚, 黄廷祝   

  1. 电子科技大学数学科学学院,成都 611731
  • 收稿日期:2015-09-28 接受日期:2016-05-07 出版日期:2016-12-15 发布日期:2017-02-15
  • 基金资助:
    国家973基础研究计划 (2013CB329404);国家自然科学基金 (61370147; 61170311).

Several Nonconvex Models for Image Deblurring under Poisson Noise

LIU Gang, HUANG Ting-zhu   

  1. School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731
  • Received:2015-09-28 Accepted:2016-05-07 Online:2016-12-15 Published:2017-02-15
  • Supported by:
    The National Basic Research Program 973 of China (2013CB329404); the National Natural Science Foundation of China (61370147; 61170311).

摘要: 图像复原中通常假设图像在梯度域上是稀疏的,而非凸正则化方法会更加促进稀疏性.本文基于近年出现的几类非凸正则项,提出了泊松噪声下图像去模糊问题的几个非凸模型,发展了相应的高效求解算法,并研究了算法的收敛性;数值实验表明所提出的非凸模型可以增强图像在梯度域上的稀疏性,并优于一些现有的方法.

关键词: 非凸正则化, 交替方向乘子方法, 稀疏性, 泊松噪声, 图像去模糊

Abstract: In image restoration, images are often assumed to be sparse after taking gradient. Nonconvex regularizers could produce more sparse gradients than convex regularizers. In this paper, based on some recent nonconvex regularizers, we propose several nonconvex models for image deblurring under Poisson noise. We develop efficient numerical algorithms for solving the proposed models and carry out the convergence analysis. Numerical results show that the proposed models achieve an enhanced gradient sparsity and yield restoration results competitive with some existing methods.

Key words: nonconvex regularization, alternating direction method of multipliers, sparsity, Poisson noise, image deblurring

中图分类号: