在线咨询
中国工业与应用数学学会会刊
主管:中华人民共和国教育部
主办:西安交通大学
ISSN 1005-3085  CN 61-1269/O1

工程数学学报 ›› 2021, Vol. 38 ›› Issue (2): 229-248.doi: 10.3969/j.issn.1005-3085.2021.02.007

• • 上一篇    下一篇

二阶混合有限体积法求解Navier-Stokes方程的稳定性及误差估计

张杰华,   韩明华   

  1. 凯里学院理学院,贵州 凯里 556011
  • 收稿日期:2018-11-19 接受日期:2020-05-27 出版日期:2021-04-15 发布日期:2022-11-08
  • 基金资助:
    贵州省教育厅资助项目 ([2018]361).

Stability and Error Estimate of the Second-order Mixed Finite Volume Method for Solving the Navier-Stokes Problems

ZHANG Jie-hua,  HAN Ming-hua   

  1. School of Science, Kaili University, Kaili, Guizhou 556011
  • Received:2018-11-19 Accepted:2020-05-27 Online:2021-04-15 Published:2022-11-08
  • Supported by:
    The Education Department of Guizhou Province ([2018]361).

摘要: 在流体力学许多实际问题的数值模拟中,有限体积法由于具有局部守恒性和处理复杂几何区域的离散化能力,因此成为一类非常重要和流行的数值方法.本文提出了二阶混合有限体积法求解Navier-Stokes方程.具体地,在三角网格上,取速度场的试验函数空间为分层二次多项式有限元空间,相应的检验函数空间由分片常数函数与分片二次多项式函数组成.取压力的试验函数空间和检验函数空间均为分片线性有限元空间.对Navier-Stokes方程中的非线性项直接在控制体积上进行离散.在粘度满足一定条件的标准假设下,本文证明了二阶混合有限体积法方程的稳定性,并得到了关于速度与压力的最优阶误差估计,其收敛阶与对应的有限元法结论一致.最后的数值算例验证了本文理论结果的正确性以及本文数值方法的有效性.

关键词: 有限体积法, Navier-Stokes方程, 稳定性, 误差估计

Abstract: In the numerical simulation of many practical problems of fluid mechanics, the finite volume method is a very important and popular numerical method due to the local conservation and the capability of discretizing domains with complex geometry. A second-order mixed finite volume method is proposed in this paper to solve the Navier-Stokes equations. Specifically, on the triangular meshes, the trial function space for velocity of the Navier-Stokes equations is taken as the hierarchical quadratic conforming finite element space, and the corresponding test function space is composed of the piecewise constant functions and the piecewise quadratic polynomial functions. Both the trial function space and the test function space for pressure are chosen as the piecewise linear finite element space. The nonlinear terms in the Navier-Stokes equations are directly discretized on the control volumes of the finite volume method. Under the standard assumption that the viscosity parameter satisfies certain conditions, the stability of the proposed mixed finite volume method is proved and the optimal order error estimates for velocity and pressure of the Navier-Stokes equations are obtained, which are consistent with that of the corresponding finite element method.  The numerical examples are presented to verify the correctness of the theoretical results  and the effectiveness of the proposed numerical method.

Key words: finite volume method, Navier-Stokes equations, stability, error estimates

中图分类号: